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SUMMARY 
A new computational approach is developed for the analysis of vortex-dominated flow fields around highly 
swept wings at high angles of attack. In this approach an inviscid Euler technology is coupled with viscous 
models, similar to inviscid/boundary layer coupling. The viscous nature of the vortex core is represented by 
an algebraic model derived from the Navier-Stokes equations. The approach also accounts for the effects of 
the viscous shear layer near a wing surface through a modified surface boundary condition. The inviscid/vis- 
cous coupling consistently provides improved predictions of leading edge separation, vortex bursting and 
secondary vortex formation at relatively low computational cost. Results for several cases are compared 
with wind tunnel tests and other Euler and Navier-Stokes solutions 
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1. INTRODUCTION 

Flow fields involving leading edge vortex separation are strongly non-linear and viscous. Air 
viscosity plays a dominant role in producing the leading edge vortex separation and vortex 
bursting for highly swept wings at high angles of attack. In addition, the overall flow field 
structure is very sensitive to the presence of the vortex system. Therefore the flow model should 
include viscous terms to represent the complex flow structure. The use of the Navier-Stokes 
equations requires that the grid size be compatible with the characteristic length scale of air 
viscosity. This leads to large memory and computer time requirements, especially for high- 
Reynolds-number flows, making the solution process expensive. Furthermore, the resulting 
solutions are contaminated by numerical viscosity which is introduced through finite truncations 
and the grid systems used. In some cases the numerical viscosity may have a greater effect on the 
solutions than the physical viscosity terms. The Navier-Stokes formulation is also hampered by 
the lack of an adequate turbulence model. 

Euler solutions are usually less expensive than Navier-Stokes solutions because viscosity 
effects are not included. This cost advantage is partly due to the use of simpler equations but 
primarily due to the use of coarser grids than those used by Navier-Stokes solvers. Although the 
Euler formulation can give adequate representation of most portions of the flow field, it often fails 
to resolve the details of vortex dynamics. Numerical viscosity in Euler codes can trigger such 
viscous effects as leading edge separation and vortex bursting if defined in the same direction as 
the physical viscosity. However, the viscous physics cannot be quantitatively represented. 
Although Euler solutions can produce a flow structure similar to that of the actual physics, many 
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important flow features cannot be captured at the correct flow conditions with the Euler 
formulation. Better models describing the vortical flows are needed to represent the viscous 
physics and to minimize the numerical contaminations. 

Many computational efforts have been made to predict steady vortex-dominated flow fields 
based on the Euler and Navier-Stokes equations.' -' Available simulation technologies and 
physical aspects were reviewed by several authors.738 Some investigators were able to simulate 
vortex breakdown and generate secondary v o r t i c e ~ . ~ ~ ' ~  Effects of grid topology and grid density 
on the resulting flow solutions were also studied."- l 2  While sigmlicant progress has been made, 
present technologies still have many limitations for understanding vortices and practical appli- 
cations. 

This paper describes a method which uses the Euler formulation but includes viscous physics 
through a vortex core model and a modified surface boundary condition. The concept has been 
recently developed by the authors and shown to provide a better prediction capability for vortical 
flow field analy~is.'~ The vortex core model has improved predictions of vortex breakdown and 
secondary vortices with little increase in computational cost. The modified surface boundary 
condition enhances the ability of Euler codes to predict the angle of attack at which a leading edge 
vortex appears on wings with round leading edges. The viscous models are derived from the 
Navier-Stokes equations and validated using simple test cases. Results for several highly swept 
wings are compared with those from experiments and from conventional Euler and Navier- 
Stokes solutions. 

2. EULER ANALYSIS 

The conventional premise is that a flow field can be modelled with the Euler equations if viscous 
effects do not alter the basic flow structure. The Euler equations bypass the computational issues 
associated with the small length scales in modelling viscous effects. However, flow field structures 
involving leading edge vortices are strongly influenced by air viscosity. Without proper viscous 
models a flow field analysis cannot accurately predict leading edge vortex separation, vortex core 
dynamics and vortex breakdown. In the present study, therefore, viscous effects are included by 
adding momentum source terms to the Euler equations. 

The unsteady Euler equations are solved to obtain steady state solutions as time asymptotes. 
Including the momentum source terms for viscous effeds, the time-dependent Euler equations 
can be written in vector form as 

aw 
at 
-+ V . F = S,  

where p ,  p, E and q = (u, u, w) are the density, pressure, total energy and velocityvector of the flow. 
The right-hand side of equation (1) is the contribution of momentum sources representing the 
viscous effects. Instead of using the viscous stress terms of the Navier-Stokes equations, the 
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momentum source vector Q is explicitly defined using viscous models to be discussed in the 
following sections. 

A surface-fitted co-ordinate system is adopted to facilitate the implementation of surface 
boundary conditions on configuration geometries. Equation (1) is then transformed into the 
generalized co-ordinate system and a finite volume method is used for the spatial discretization. 
All the flow variables are defined at cell centres. The use of a divergence-free form ensures the 
conservation of flow quantities. The centred difference scheme is adopted and flow-adaptive 
artificial viscosity terms are added for numerical stability. Integration in the time domain is 
performed explicitly using a fourth-order Runge-Kutta method. Since time accuracy is not 
sought, the time steps are defined locally to accelerate convergence. 

Three different boundary conditions are implemented. Characteristic boundary conditions are 
imposed at the far-field boundary based on one-dimensional eigenvalue analysis. For planes of 
symmetry a mirror image condition is imposed for all the flow variables. The boundary condition 
on solid surfaces is the flow tangency condition. This solid wall boundary condition is incorpor- 
ated with the viscous shear layer model to account for the momentum losses inside the shear 
layer. The pressure must be specified on solid wall boundaries and at the plane of symmetry. 
Conventionally in the Euler formulation the surface pressure is extrapolated from the infield 
points using the normal momentum equation. This extrapolation procedure is also modified in 
order to include viscous effects. 

3. CORE MODEL DEVELOPMENT 

A viscous model for the vortex core is derived from the steady, incompressible Navier-Stokes 
equations written for the cylindrical co-ordinate system centred on a vortex core. The vortex is 
assumed to be slender and close to a wing surface and a plane of symmetry. The vortex core 
diameter is assumed to be of the order of the square root of the Reynolds number. After 
eliminating the terms which become negligible for large Reynolds numbers and the terms 
involved in the circumferential direction, the non-dimensionalized equations of motion become 

w2 1 ap 
r p a r ’  
-=-- 

Here the velocity components u,u and w are defined in the co-ordinates x, r and 9 which 
correspond to the axial, radial and circumferential directions. In equation (2) the following non- 
dimensional parameters are defined: 

where L is the reference axial length scale of the vortex and dref is the reference vortex core radius 
at x = L. The variables p and p are the density and viscosity of the air respectively and U, denotes 
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the freestream velocity. Length, velocity and pressure are normalized by L, U, and pV’, 
respectively. As in the boundary layer equations, the radial co-ordinate and its velocity compon- 
ent are scaled by the small parameter E. 

The above equations are integrated algebraically by defining axial and circumferential velocity 
profiles within the vortex core. Here the velocity profile implies the shape of the velocity 
distribution in the radial direction. The velocity profile defined by Mager14 is adopted for the 
integration. Since Euler codes cannot accommodate a purely inviscid vortex which contains a 
singularity at the centre, the vortex model must have a rotational core as in the Rankine vortex. 
Also, there is a limitation on the vortex core size which can be resolved by Euler codes. Any core 
smaller than this limit will be diffused by numerical viscosity. Figure 1 shows the compatibility 
between Mager’s model and results from a Euler code for profiles of circumferential velocity and 
circulation. Profiles for the Rankine vortex are also included for comparison. Note that the 
circulation around a vortex is constant outside the core. 

Another consideration is the influence of the image vortex filaments associated with the wing 
surface boundary and the plane of symmetry (Figure 2). To include these effects, the Cartesian co- 
ordinate system is used, with x, Y and Z as streamwise, vertical and spanwise co-ordinates 
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Figure. 1. Vortex core structure 
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Figure 2. Vortex filament and its images 

respectively. In this co-ordinate system two non-dimensional distances and two angles are defined 
as follows: 

zcore  - Zsymm 
9 1, = 

6rer 6 , C f  

Kore - K i n g  1, = , 

First, with the specified circumferential velocity profile, equation (2c) is integrated from the core 
centre, r = 0, to the edge of the core, r = 6. Then the pressure at the vortex centre can be given by 

r 2  
1 -  

P(X, O)=P(X, 6 ) - K ,  -+KiT2C4. 
a (3) 

The vortex core area a and the circulation r are defined as 

a = d2, r = 271swd, 

where the subscript 6 denotes the value at the core boundary. In equation (3) C, is the influence of 
the image vortices given by 
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The coefficient K, depends on the choice of the circumferential velocity profile and K ,  accounts 
for the influence of image vortices. 

It is assumed that the velocity profiles are similar in the axial direction, with the core diameter 6 
and the core edge axial velocity u, as the similarity parameters. Then the radial velocity profile 
can be obtained by integrating equation (2a) with respect to the radial direction. With profiles of 
the three velocity components known, equation (2d) is then integrated over the area of the vortex 
core to obtain 

I d a  K,dT K,du, K, 
a d x  r dx u, dx Res2au,’ +- --= (5 )  

where the values of K,, K, and K, depend on the velocity profiles chosen. For the Rankine 
vortex circumferential velocity profile K, and K, are zero and K, is one. In this case equation (5)  
implies that the vortex core area is a linear function of the vortex strength. For complex velocity 
profiles it is more difficult to integrate equation (5). If the last term is assumed to be independent 
of x, then the equation can be integrated to give 

where KO is a core growth parameter which depends primarily on the product Re&’ and xo comes 
from the integration constant. Equation (6) serves as a model for the growth of the physical vortex 
core based on velocity profiles and parameters measured from the Euler solution. 

Next, the circumferential velocity profile is assumed to be close to that of the Rankine vortex in 
order to approximate the radial distribution of pressure with 

Using equations (3) and (7), equation (2b) is integrated over the area of the core to get the one- 
dimensional relation along the vortex core: 

rz dC’) (8) ( p u  ;+:),= - Ka( !g-sg)+ Ki( r- dT C --- T Z d a  C +-- 
dx ’ 2adx ’ 2 dx ’ 

wYlere the subscript 0 designates core centre values. 
It is worthwhile to point out that the contribution of the viscous term disappears in the 

integration if the axial velocity profile is defined with zero slope at the centre and the edge of the 
core. Note that the coefficients K, and Ki are functions of the velocity profiles and the location of 
the vortex core. If the velocity profiles of the viscous core and those in Euler solutions are similar, 
then the major discrepancy of the Euler formulation is primarily due to the non-physical 
estimation of the core size and the core growth rate. Therefore the non-physical vortex core in 
Euler solutions can be replaced with a core that is derived from viscous physics, as given in 
equation (8). This is in effect equivalent to an addition of the difference between the model and the 
Euler solution as a source term into the Euler formulation. The difference can be given as 

(9) 
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where the subscript E denotes flow quantities measured in the Euler solution. Similarly, the 
correction to pressure at the core centre is given by 

Equation (9) provides the momentum source terms for use in the right-hand side of the Euler 
equations, as shown in equation (1). Again the control parameters KO,& and Ki depend 
primarily on the velocity profiles of the physical vortex. Equation (10) represents a correction to 
the vortex core pressure in the Euler solution based on the ratio of the size of the model core to 
the size of the core in the Euler solution. 

4. SHEAR LAYER MODELLING 

Vortex roll-up is initiated by boundary layer separation near the leading edges of highly swept 
wings, Without viscous models for the shear layer of the three-dimensional separation, Euler 
solvers create leading edge separation by numerical diffusion, which is again a function of grid 
quality, grid size and the numerical algorithm. Also, the downstream vortex strength depends on 
the location where the separation begins, which cannot be determined u priori for wings with 
round leading edges. 

The momentum equations for the control volume next to the wing surface require knowledge 
of the pressure on the wing surface. Two different methods for estimating the pressure on the wing 
surface were tested. The first method uses the normal momentum equation from the Euler 
formulation to extrapolate pressure from the cell centre down to the wing surface. when this 
method is used, the appearance of leading edge vortices in the flow solution was delayed to higher 
angles of attack than those obtained from wind tunnel tests. The second method equates the 
pressure at the wing surface to the pressure at the centre of the boundary cell by assuming zero 
normal pressure gradient as in the boundary layer. When this boundary condition is used, the 
vortices start to appear at lower angles of attack. This effect of the surface pressure boundary 
condition on the appearance of the leading edge vortex separation is shown in Figure 3. 

The flow phenomena inside the viscous shear layer near the wing are too complex to model 
with simple physics. The flow field involves many different features, including the mechanism for 

Figure 3. Effect of surface pressure boundary condition on appearance of leading edge vortex separation-cross-flow 
velocity vectors for an arrow wing at a= 18": (a) surface pressure extrapolated using the normal momentum equation; 

(b) surface pressure extrapolated by assuming zero normal pressure gradient 
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creating leading edge vortices, reattachment of the primary vortex, appearance of a secondary 
vortex separation, etc. Instead of attempting to model these complex phenomena, the influence of 
the shear layer on the vortex system is included through a simple model. Two major character- 
istics, shear layer thickness and wall shear stress, are identified and modelled with formulae 
borrowed from the incompressible turbulent boundary layer on a flat plate. That is, the wall shear 
layer thickness and the skin friction coefficient are defined from 

where Relocal is the local Reynolds number based on the distance I measured from the apex of a 
delta wing. The coefficients K ,  and K ,  are input specified constants with values of 0.37 and 0.074 
respectively for the flat plate. The shear stress effect is added into the momentum equations in the 
direction of the surface velocity vector as source terms. The shear layer thickness effect is 
accounted for in the surface pressure estimation by using 

where pccll is the pressure at the neighbouring boundary cell, dpldn is the pressure gradient in the 
normal direction and A is the normal distance between the two points. If awall is set to zero, the 
equation implies that the wall pressure is obtained through a purely inviscid calculation. 

5. MODEL IMPLEMENTATION 

The vortex a r e  model is implemented in the Euler solver as a separate subroutine and accessed 
periodically. The total circulation or vortex strength and the Euler vortex core size are measured 
from Euler solutions at each axial location along the vortex. The vortex strength is obtained by 
evaluating the vorticity fluxes through the surfaces of each cell and summing them. The area of 
the vortex core is measured from the cross-sectional areas of the cells which contain vorticity of 
strength above a given threshold level. The centre of the vortex at each axial station is identified as 
the cell with a local minimum static pressure and a local maximum vorticity flux. Locating the 
vortex centre establishes the values of C, in equation (4). 

The momentum source term in the vortex core direction and the correction to the pressure at 
the vortex centre are obtained from equations (9) and (10). These quantities are added to the flow 
solver for subsequent iterations. To avoid destabilizing the solution process, the momentum 
source terms are not just applied to the cell at the vortex centre. The source terms for the 
neighbouring cells are scaled in accordance with their distance from the centre following a profile 
similar to the axial velocity profiles used by Mager. In order to reduce computational costs, these 
corrections are updated every 30 iterations. 

The viscous layer model for the surface boundary condition is also incorporated into the Euler 
solver. The pressure at the surface is defined using equation (13) to include the viscous layer 
thickness effect. The shear stress in equation (12) defines source terms for the boundary cells. The 
source terms are added to the Euler equations in the direction parallel to the surface velocity 
vector. As in the vortex core model, the corrections for the surface boundary condition model are 
updated periodically. 
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6. RESULTS 

The vortex core model was first examined with a simple vortex filament introduced in the 
direction of the freestream near a solid wall and a plane of ~ymmetry.'~ The numerical viscosity 
included in inviscid Euler calculations produces a finite vortex core. Refined grids reduce the core 
size. Axially expanding grids enlarge the vortex core downstream. The enlarged core reduces the 
circumferential velocity component and hence increases the core pressure. The grid-induced 
adverse pressure gradient along a vortex core may cause a reversal in the axial velocity 
component inside the core, as in vortex bursting. The developed vortex core model can eliminate 
the grid-induced axial velocity defect by linking the core pressure to the physical core size instead 
of the grid-dependent core size. On the other hand, if a sufficient rate of growth of the physical 
core is assumed, the model produces an axial flow reversal on a uniform grid. This implies that, 
unlike the Euler solver alone, the Euler code with model can produce a flow reversal depending 
on physical parameter values instead of relying on numerics. 

The ability of the developed core model to predict the onset of bursting was assessed on four 
different flat plate delta wings, three with sweep angles of 55", 65" and 75" and the other with an 
aspect ratio of 1.0. All the calculations were performed at a Mach number of 0.2 and a Reynolds 
number of lo6. Figure 4 shows a typical H - 0  grid topology used for these tests. Figure 5 shows 

Figure 4. Grid topology to study vortex bursting on delta wings 
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Figure 5. Predictions of vortex-bursting locations: (a) 65" delta wing; (b) 75" delta wing; (c) 55" delta wing; (d) aspect ratio 
1.0 delta wing 

Trailing edge 
C root C roo1 

bursting location versus angle of attack curves from the Euler solver with the vortex core model 
compared with results from wind tunnels,' 5*1  Euler solvers alone and Navier-Stokes solvers. l7 
In all these tests the parameters KO, K, and K, were held constant. No special treatment was given 
on the vortex core model downstream of the vortex burst. Although the core model is not valid 
downstream of the bursting point, the same core model was used with a large core size. For each 
wing tested, the Euler code and core model were able to produce results in closer agreement with 
wind tunnel tests and Navier-Stokes codes than did the Euler solver alone. Figure 6(a) compares 
velocity vectors in the horizontal plane containing the vortex for an aspect ratio 1.0 delta wing at 
40" angle of attack. The result from the Euler code alone shows the bursting point at an axial 
station about 70% root chord downstream of the wing apex. The Euler code and model give the 
bursting point at about 30% root chord, which agrees better with Navier-Stokes results. 
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Figure 6. Effect of vortex core model for aspect ratio 1.0 delta wing at tl =No: (a) velocity vectors on a horizontal plane 
near the vortex core; (b) surface pressure at 50% root chord 

Figure 6(b) compares the corresponding C,-curves for the two solutions at 50% root chord. The 
vortex at that station has burst in the solution using the model but not in the conventional Euler 
solution. Note the flattening of the C,-curve when bursting has occurred. 

The surface boundary condition with the viscous layer model was tested on an arrow wing. 
This test was carried out at a Mach number of 0.4 and a Reynolds number of 2 x lo6. Figure 7 
shows the typical C-mesh topology used for this study. Figure 8 illustrates the effect on surface 
pressure distribution of changing K, of the shear Iayer model while holding the Reynolds number 
equal to that of the wind tunnel test.'* A value of 2.1 for K ,  appears to give the best result. 
Figure 9 compares surface pressure contours from wind tunnel tests with those from a Euler 
solver using the viscous layer model surface boundary condition for a range of angles of attack, 
exhibiting consistent agreement. 

Also considered is the simple shear stress model which accounts for the effects of velocity 
defects in the viscous layer through momentum source terms in the boundary cells. Figure 10 
compares two cross-flow velocity vector plots for a 65" swept delta wing with round leading 
edges. A Mach number of 0 2  and a Reynolds number of 0.9 x lo6 were used in these calculations. 
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K s =  1 . 3  

Figure 7. C-mesh topology used with shear layer model 

K 6 = 2 . 1  Wind Tunnel [ 181 K = 3 . 3  K , = 5 . 3  

Figure 8. Effect of shear layer growth parameter-surface pressure contours for an arrow wing with round leading edges 
at a=4" 
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Figure 9. Comparison of surface pressure contours with wind tunnel tests at various angles of attack 

Figures 11 and 12 also compare the surface pressures and the surface velocity vectors respectively, 
showing that the shear layer model can capture the appearance of the secondary vortex near the 
wing tip. The location and strength of this secondary vortex are in qualitative agreement with 
results from Navier-Stokes solutions” and wind  tunnel^.'^ Because such secondary vortices are 
not normally seen in Euler solutions,2* these preliminary results are encouraging, although 
further refinement of the viscous layer model is required. 

7. CONCLUSIONS 

A computational approach has been developed which incorporates viscous models from the 
Navier-Stokes physics into Euler solvers. The inviscid/viscous coupling provides corrections to 
the inviscid Euler formulation in the form of momentum source terms. The combination of Euler 
code and core model has been shown to give predictions of vortex-bursting points on delta wings 
which are in better agreement with wind tunnel tests and Navier-Stokds solutions than can be 
achieved by a Euler code alone. Surface pressure predictions are also improved. The model 
reduces the effects of grid stretching and artificial viscosity which may cause numerical vortex 
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Euler Euler + Model 

Figure 10. Effect of shear layer model-ross-flow velocity vectors at  50% root chord of a 65" delta wing with round 
leading edges at a = 40" 

Figure 11. Effect of shear layer model--surface pressure contours on a 65" delta wing with round leading edges at a=20" 

bursting in Euler solutions and captures physical vortex bursting as in Navier-Stokes solutions. 
These capabilities are achieved at a very modest cost. 

A simple model was also used to include the viscous physics of the wall shear layer through the 
surface boundary condition in Euler solvers. An approximation of the total pressure loss in the 
viscous layer near the wing surface provides a boundary condition which is closer to the actual 
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Euler 

Euler + Model 

Figure 12. Effect of shear layer model-surface velocity vectors on a 65“ delta wing with round leading edges at a=20” 

physics. Prediction of leading edge separation and vortex roll-up on highly swept wings with 
rounded leading edges is improved. The use of a more refined model for the viscous layer would 
further enhance the performance of the method. It has also been demonstrated that inclusion of 
momentum defects near the wing surface can lead to the appearance of secondary vortices in 
Euler solutions. 

The major merit of the presented approach is the ability to produce improved predictions for 
vortex-dominated flows consistently and at comparatively low cost. Although successful results 
have been demonstrated, further refinement and fine tuning of the viscous models are needed. 
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